Respuesta :

Space

Answer:

[tex]\displaystyle d^{j + k}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Exponential Rule [Multiplying]: [tex]\displaystyle b^m \cdot b^n = b^{m + n}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle d^j \cdot d^k[/tex]

Step 2: Find

  1. Multiply [Exponential Rule - Multiplying]:                                                         [tex]\displaystyle d^j \cdot d^k = d^{j + k}[/tex]
gmany

Answer:

[tex]\huge\boxed{d^j\cdot d^k=d^{j+k}}[/tex]

Step-by-step explanation:

Use the theorem:

[tex]a^n\cdot a^m=a^{n+m}[/tex]

Why? Look at this example:

[tex]2^3\cdot2^4=\underbrace{2\cdot2\cdot2}_{3}\cdot\underbrace{2\cdot2\cdot2\cdot2}_4=\underbrace{2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2}_{7}=2^7[/tex]

Therefore

[tex]d^j\cdot d^k=d^{j+k}[/tex]