Respuesta :
Answer:
[tex]\displaystyle d^{j + k}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Exponential Rule [Multiplying]: [tex]\displaystyle b^m \cdot b^n = b^{m + n}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle d^j \cdot d^k[/tex]
Step 2: Find
- Multiply [Exponential Rule - Multiplying]: [tex]\displaystyle d^j \cdot d^k = d^{j + k}[/tex]
Answer:
[tex]\huge\boxed{d^j\cdot d^k=d^{j+k}}[/tex]
Step-by-step explanation:
Use the theorem:
[tex]a^n\cdot a^m=a^{n+m}[/tex]
Why? Look at this example:
[tex]2^3\cdot2^4=\underbrace{2\cdot2\cdot2}_{3}\cdot\underbrace{2\cdot2\cdot2\cdot2}_4=\underbrace{2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2}_{7}=2^7[/tex]
Therefore
[tex]d^j\cdot d^k=d^{j+k}[/tex]