You are given the following information about x and y.
x y Independent Dependent Variable Variable 15 5 12 7 10 9 7 11
The least squares estimate of b 0 equals ______.
a. 16.41176
b. â1.3
c. 21.4
d. â7.647

Respuesta :

Answer:

[tex]b_0 = 16.471[/tex]

Step-by-step explanation:

Given

[tex]\begin{array}{ccccc}x & {15} & {12} & {10} & {7} \ \\ y & {5} & {7} & {9} & {11} \ \end{array}[/tex]

Required

The least square estimate [tex]b_0[/tex]

Calculate the mean of x

[tex]\bar x = \frac{\sum x}{n}[/tex]

[tex]\bar x = \frac{15+12+10+7}{4} =\frac{44}{4} = 11[/tex]

Calculate the mean of y

[tex]\bar y = \frac{\sum y}{n}[/tex]

[tex]\bar y = \frac{5+7+9+11}{4} =\frac{32}{4} = 8[/tex]

Calculate [tex]\sum(x - \bar x) * (y - \bar y)[/tex]

[tex]\sum(x - \bar x) = (15 - 11) * (5 - 8)+ (12 - 11) * (7 - 8) + (10 - 11) * (9 - 8)+ (7 - 11) * (11 - 8)[/tex]

[tex]\sum(x - \bar x) = -26[/tex]

Calculate [tex]\sum(x - \bar x)^2[/tex]

[tex]\sum(x - \bar x)^2 = (15 - 11)^2 + (12 - 11)^2 + (10 - 11)^2 + (7 - 11)^2[/tex]

[tex]\sum(x - \bar x)^2 = 34[/tex]

So:

[tex]b = \frac{\sum(x - \bar x) * (y - \bar y)}{\sum(x - \bar x)^2}[/tex]

[tex]b = \frac{-26}{34}[/tex]

[tex]b_0 = y - bx[/tex]

[tex]b_0 = 5 - \frac{-26}{34}*15[/tex]

[tex]b_0 = 5 + \frac{26*15}{34}[/tex]

[tex]b_0 = 5 + \frac{390}{34}[/tex]

Take LCM

[tex]b_0 = \frac{34*5+ 390}{34}[/tex]

[tex]b_0 = \frac{560}{34}[/tex]

[tex]b_0 = 16.471[/tex]