Using the following distribution, calculate the following measures of central tendency:
State Proportion of Residents Without Health Insurance Louisiana 0.19 New Jersey 0.13 New York 0.16 Pennsylvania 0.11 Rhode Island 0.09 South Carolina 0.13 Texas 0.25 Washington 0.14 Wisconsin 0.10
N = 9
Identify the variable:
Identify the median:
Identify the mean:
How would you describe the shape of the distribution:

Respuesta :

Answer:

(a) Residents

(b) [tex]Median = 0.13[/tex]

(c)  [tex]\bar x = 0.14[/tex]

(d) Right skewed

Step-by-step explanation:

Given

The data of residents without health insurance

Solving (a): The variable

The variable is the residents

Solving (b): The median

First, we sort the data

[tex]Sorted: 0.09, 0.10, 0.11, 0.13, 0.13, 0.14, 0.16, 0.19, 0.25[/tex]

So, the median position is:

[tex]Median = \frac{n + 1}{2}[/tex]

[tex]Median = \frac{9 + 1}{2}[/tex]

[tex]Median = \frac{10}{2}[/tex]

[tex]Median = 5th[/tex]

The 5th element of the dataset is: 0.13

So:

[tex]Median = 0.13[/tex]

Solving (c): The mean

This is calculated as:

[tex]\bar x = \frac{\sum x}{n}[/tex]

[tex]\bar x = \frac{0.09+ 0.10+ 0.11+ 0.13+ 0.13+ 0.14+ 0.16+ 0.19+ 0.25}{9}[/tex]

[tex]\bar x = \frac{1.3}{9}[/tex]

[tex]\bar x = 0.14[/tex]

Solving (d): The shape of the distribution

In (b) and (c), we have:

[tex]Median = 0.13[/tex]

[tex]\bar x = 0.14[/tex]

By comparison, the mean is greater than the median.

Hence, the shape is: right skewed.