in a two digit number the tens digit is 6 more than the units digit. if the digits are interchanged, the sum of the new and the original number is 132. Determine the original number.​

Respuesta :

Given:

In a two digit number the tens digit is 6 more than the units digit.

If the digits are interchanged, the sum of the new and the original number is 132.

To find:

The original number.

Solution:

Let the unit digit of the original number be x. So, the tens digit is (x+6) and the value of the number is:

[tex]m=(x+6)\times 10+x\times 1[/tex]

[tex]m=10x+60+x[/tex]

[tex]m=11x+60[/tex]

If we interchange the digits, then the value of new number is:

[tex]n=x\times 10+(x+6)\times 1[/tex]

[tex]n=10x+x+6[/tex]

[tex]n=11x+6[/tex]

The sum of the new and the original number is 132.

[tex]m+n=132[/tex]

[tex]11x+60+11x+6=132[/tex]

[tex]22x+66=132[/tex]

[tex]22x=132-66[/tex]

[tex]22x=66[/tex]

Divide both sides by 22.

[tex]x=\dfrac{66}{22}[/tex]

[tex]x=3[/tex]

So, the unit digit of the original number is 3 and the tens digit is:

[tex]x+6=3+6[/tex]

[tex]x+6=9[/tex]

Therefore, the original number is 39.