Respuesta :
Answer:
The difference in the H⁺ concentration between the two solutions is approximately equal to the H⁺ concentration of the acidic solution.
Step-by-step explanation:
The pH is given by:
[tex] pH = -log[H^{+}] [/tex]
Where:
[tex] [H^{+}][/tex]: is the concentration of hydrogen ions.
For the basic solution (pH = 11.2), the concentration of H⁺ is given by:
[tex] [H^{+}]_{b} = 10^{-pH} = 10^{-11.2} = 6.31 \cdot 10^{-12} [/tex]
And, for the acidic solution (pH = 2.4) we have:
[tex] [H^{+}]_{a} = 10^{-pH} = 10^{-2.4} = 3.98 \cdot 10^{-3} [/tex]
Hence, the difference in the concentration of H⁺ between the two solutions is:
[tex] \Delta H^{+} = [H^{+}]_{a} - [H^{+}]_{b} = 3.98 \cdot 10^{-3} - 6.31\cdot 10^{-12} = 3.98 \cdot 10^{-3} [/tex]
Therefore, the difference in the H⁺ concentration between the two solutions is approximately equal to the H⁺ concentration of the acidic solution.
I hope it helps you!
Answer:
B. 4.0 x [tex]10^{-3}[/tex]
Step-by-step explanation:
EDG2021