Respuesta :

Answer:

"Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".

Step-by-step explanation:

Let be the following system of linear equations:

[tex]4\cdot x + 4\cdot y + z = 24[/tex] (1)

[tex]2\cdot x - 4\cdot y +z = 0[/tex] (2)

[tex]5\cdot x - 4\cdot y - 5\cdot z = 12[/tex] (3)

1) We eliminate [tex]y[/tex] by adding (1) and (2):

[tex](4\cdot x + 2\cdot x) +(4\cdot y - 4\cdot y) + (z + z) = 24 + 0[/tex]

[tex]6\cdot x +2\cdot z = 24[/tex] (4)

2) We eliminate [tex]y[/tex] by adding (1) and (3):

[tex](4\cdot x + 5\cdot x) +(4\cdot y - 4\cdot y) +(z -5\cdot z) = (24 + 12)[/tex]

[tex]9\cdot x -4\cdot z = 36[/tex] (5)

Hence, the correct answer is "Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".