Algebraically show that each of the given combinations are equivalent to the given functions. f(x) – g() is
equivalent to m(x) given:
f(0)
= - 3x + 5; g(x)
- 5x – 7; m(x) = 2x + 12
f(x) – g(x) = (
=
Is f(x) – g(x) equivalent to m(x)? yes

Respuesta :

Answer:

[tex]f(x) - g(x) = 2x + 12[/tex]

[tex]m(x) = f(x) - g(x)[/tex] --- True

Step-by-step explanation:

Given

[tex]f(x) = -3x + 5[/tex]

[tex]g(x) = -5x - 7[/tex]

[tex]m(x) = 2x + 12[/tex]

Solving (a): [tex]f(x) - g(x)[/tex]

From the given parameters, we have:

[tex]f(x) = -3x + 5[/tex]

[tex]g(x) = -5x - 7[/tex]

So:

[tex]f(x) - g(x)=-3x+5 + 5x + 7[/tex]

Collect like terms

[tex]f(x) - g(x) = 2x + 12[/tex]

Solving (b) m(x) = f(x) = g(x)?

In (a), we have:

[tex]f(x) - g(x) = 2x + 12[/tex]

And

[tex]m(x) = 2x + 12[/tex] --- given

By comparison:

[tex]m(x) = f(x) - g(x)[/tex]