Given:
The equation is:
[tex]4\log_2(2x)=x+4[/tex]
The graph of the [tex]4\log_2(2x)[/tex] and [tex]x+4[/tex] are given on a coordinate plane.
To find:
The solution of the given equation from the given graph.
Solution:
From the given graph it is clear that the graphs of [tex]4\log_2(2x)[/tex] and [tex]x+4[/tex] intersect each other at points (1.24,5.24) and (16,20).
It means the values of both functions [tex]4\log_2(2x)[/tex] and [tex]x+4[/tex] are equal at [tex]x=1.24[/tex] and [tex]x=16[/tex].
So, the solutions of given equation are [tex]x=1.24[/tex] and [tex]x=16[/tex].
Therefore, the correct option is only F.