Respuesta :

Given:

The equation is:

[tex]4\log_2(2x)=x+4[/tex]

The graph of the [tex]4\log_2(2x)[/tex] and [tex]x+4[/tex] are given on a coordinate plane.

To find:

The solution of the given equation from the given graph.

Solution:

From the given graph it is clear that the graphs of [tex]4\log_2(2x)[/tex] and [tex]x+4[/tex] intersect each other at points (1.24,5.24) and (16,20).

It means the values of both functions [tex]4\log_2(2x)[/tex] and [tex]x+4[/tex] are equal at [tex]x=1.24[/tex] and [tex]x=16[/tex].

So, the solutions of given equation are [tex]x=1.24[/tex] and [tex]x=16[/tex].

Therefore, the correct option is only F.