Answer:
The answer is "[tex]0.99999340657 \sim 1[/tex]".
Step-by-step explanation:
[tex]Sucess \ probability \ (p) = 94\% \ or\ 0.94\\\\Sample\ numbers\ n = 14\\[/tex]
Using formula:
[tex]P(X=r)= ^n C_r \times p^r \times (1-p)^{n-r}[/tex]
Let
[tex]\to r=8,9,10,11,12,13 \ or\ 14\\\\[/tex]
Substituting the value for all r:
[tex]P(X=8)= 0.00008540547\\\\P(X=9)= 0.00089201264\\\\P(X=10)= 0.00698743233\\\\P(X=11)= 0.03980719025\\\\P(X=12)= 0.15591149513\\\\P(X=13)= 0.37578668058\\\\P(X=14)= 0.42052319017\\[/tex]
Therefore,
[tex]P(X>7)= P(X=8)+P(X=9)+....P(X=14)\\\\= 0.99999340657 \sim 1.[/tex]