Respuesta :

Answer:

r≈4.5 ft

Step-by-step explanation:

r≈4.5 ft

\text{Volume of a Sphere:}

Volume of a Sphere:

V=\frac{4}{3}\pi r^3

V=

3

4

πr

3

384=

384=

\,\,\left(\frac{4}{3}\pi\right) r^3

(

3

4

π)r

3

384=

384=

\,\,(4.1887902)r^3

(4.1887902)r

3

Evaluate 4/3pi in calc

\frac{384}{4.1887902}=

4.1887902

384

=

\,\,\frac{(4.1887902)r^3}{4.1887902}

4.1887902

(4.1887902)r

3

Evaluate \frac{4}{3}\pi

3

4

π in calc

91.6732472=

91.6732472=

\,\,r^3

r

3

\sqrt[3]{91.6732472}=

3

 

91.6732472

=

\,\,\sqrt[3]{r^3}

3

 

r

3

Cube root both sides

4.5090066=

4.5090066=

\,\,r

r

\text{Final Answer:}

Final Answer:

r\approx 4.5\text{ ft}

r≈4.5 ft

Round to nearest tenth