Answer:
r≈4.5 ft
Step-by-step explanation:
r≈4.5 ft
\text{Volume of a Sphere:}
Volume of a Sphere:
V=\frac{4}{3}\pi r^3
V=
3
4
πr
3
384=
384=
\,\,\left(\frac{4}{3}\pi\right) r^3
(
3
4
π)r
3
384=
384=
\,\,(4.1887902)r^3
(4.1887902)r
3
Evaluate 4/3pi in calc
\frac{384}{4.1887902}=
4.1887902
384
=
\,\,\frac{(4.1887902)r^3}{4.1887902}
4.1887902
(4.1887902)r
3
Evaluate \frac{4}{3}\pi
3
4
π in calc
91.6732472=
91.6732472=
\,\,r^3
r
3
\sqrt[3]{91.6732472}=
3
91.6732472
=
\,\,\sqrt[3]{r^3}
3
r
3
Cube root both sides
4.5090066=
4.5090066=
\,\,r
r
\text{Final Answer:}
Final Answer:
r\approx 4.5\text{ ft}
r≈4.5 ft
Round to nearest tenth