Answer:
The correct answer is "16.987, 20213".
Step-by-step explanation:
Given that,
[tex]n=30[/tex]
[tex]\bar x=18.6[/tex]
[tex]s = 5.2[/tex]
[tex]df=30-1[/tex]
[tex]=29[/tex]
[tex]\alpha = 0.10[/tex]
By using the table, the critical values of t will be:
= [tex]\pm 1.699[/tex]
Now,
The confidence interval will be:
= [tex]\bar x \pm \frac{t\times s}{\sqrt{n} }[/tex]
By putting the values, we get
= [tex]18.6 \pm \frac{1.699\times 5.2}{\sqrt{30} }[/tex]
= [tex]16.987,20.213[/tex]