8.


For the graph of the function, identify the axis of symmetry, vertex and the formula for the function.


A. Axis of symmetry: x = –1; Vertex: (–1, 0); f(x) = –x2 – 2x – 1


B. Axis of symmetry: x = –1; Vertex: (–1, 0); f(x) = –2x2 – 2x – 1


C. Axis of symmetry: x = –1; Vertex: (–1, –1); f(x) = –x2 – 2x – 1


D. Axis of symmetry: x = –1; Vertex: (–1, 0); f(x) = –x2 – x + 2

8 For the graph of the function identify the axis of symmetry vertex and the formula for the function A Axis of symmetry x 1 Vertex 1 0 fx x2 2x 1 B Axis of sym class=

Respuesta :

Answer:

The answer is A. Axis of symmetry: x = –1; Vertex: (–1, 0); f(x) = –x2 – 2x – 1 or C. Axis of symmetry: x = –1; Vertex: (–1, –1); f(x) = –x2 – 2x – 1

Step-by-step explanation:

Vertex:  

(−1,0)

Focus:  

(−1,−1/4)

Axis of Symmetry:  

x

=

1

Directrix:  

y

=

1

4

x

y

3

4

2

1

1

0

0

1

1

4

Vertex:  

(

1

/2

,

1

/2

)

Focus:  

(−1/2,−5/8)

Axis of Symmetry:  

x

=

1

2

Directrix:  

y

=

3

8

x

y

2

5

1

1

1

2

1

2

1

5

2

13

Vertex:  

(

1

,

0

)

Focus:  

(

1

,

1

/4

)

Axis of Symmetry:  

x

=

1

Directrix:  

y

=

1

4

x

y

3

4

2

1

1

0

0

1

1

4

Vertex:  

(

1

/2

,

9

/4

)

Focus:  

(

1/2

,

2

)

Axis of Symmetry:  

x

=

1

2

Directrix:  

y

=

5

2

x

y

2

0

1

2

1

2

9

4

1

0

2

4

Ver imagen lalamcg115
Ver imagen lalamcg115
Ver imagen lalamcg115
Ver imagen lalamcg115