Respuesta :

Answer:

  [tex]\frac{T}{T_o} = ( 1 + \frac{1}{n} )^2[/tex]

Explanation:

This is a string resonance exercise, the wavelengths in a string held at the ends is

          λ = 2L₀ / n

where n is an integer

the speed of the wave is

           v = λ f

            f = v /λ

the speed of the wave is given by the characteristics of the medium (string)

           v = [tex]\sqrt{\frac{T}{\mu } }[/tex]

we substitute  

            f = [tex]\frac{n}{2L_o} \ \sqrt{\frac{T}{\mu } }[/tex]

to obtain the following harmonic we change n → n + 1

            f’ =  [tex]\frac{n+1}{2L_o} \ \sqrt{\frac{T_o}{\mu } }[/tex]

In this case, it tells us to change the tension to obtain the same frequency.

            f ’= \frac{n}{2L_o} \  \sqrt{\frac{T}{\mu } }

how the two frequencies are equal

         [tex]\frac{n+1}{2L_o} \sqrt{\frac{T_o}{ \mu } } = \frac{n}{2L_o} \sqrt{\frac{T}{\mu } }[/tex]

           (n + 1) [tex]\sqrt{T_o}[/tex] = n [tex]\sqrt{T}[/tex]

             [tex]\frac{T}{T_o} = ( \frac{n+1}{n} )^2[/tex]

             [tex]\frac{T}{T_o} = ( 1 + \frac{1}{n} )^2[/tex]

this is the relationship of the voltages to obtain the following harmonic,