Respuesta :

Given:

The function is:

[tex]y=2x^2+3x[/tex]

Domain is the set {-2, -1, 0).

To find:

The range of the given relation.

Solution:

We have,

[tex]y=2x^2+3x[/tex]

Substituting [tex]x=-2[/tex], we get

[tex]y=2(-2)^2+3(-2)[/tex]

[tex]y=2(4)+(-6)[/tex]

[tex]y=8-6[/tex]

[tex]y=2[/tex]

Substituting [tex]x=-1[/tex], we get

[tex]y=2(-1)^2+3(-1)[/tex]

[tex]y=2(1)+(-3)[/tex]

[tex]y=2-3[/tex]

[tex]y=-1[/tex]

Substituting [tex]x=0[/tex], we get

[tex]y=2(0)^2+3(0)[/tex]

[tex]y=0+0[/tex]

[tex]y=0[/tex]

The range for the given relation is {2, -1,0}. Therefore, the correct option is (c).