Answer:
The coordinate of the rest stop is: [tex](5,2.5)[/tex]
The distance between the hotel and the stadium is 32 miles
Step-by-step explanation:
Given
[tex](x_1,y_1) = (3,4)[/tex] --- Team hotel
[tex](x_2,y_2) = (7,1)[/tex] --- Stadium
Solving (a): The coordinates of the rest stop
The rest stop is at half way;
So, the coordinate is:
[tex](x,y) = \frac{1}{2}(x_1+x_2,y_1+y_2)[/tex]
This gives:
[tex](x,y) = \frac{1}{2}(3+7,4+1)[/tex]
[tex](x,y) = \frac{1}{2}(10,5)[/tex]
Open bracket
[tex](x,y) = (5,2.5)[/tex]
Solving (b): Distance between the hotel and the stadium
We have:
[tex](x_1,y_1) = (3,4)[/tex] --- Team hotel
[tex](x_2,y_2) = (7,1)[/tex] --- Stadium
The distance (d) is:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]
So, we have:
[tex]d = \sqrt{(3 - 7)^2 + (4 - 1)^2}[/tex]
[tex]d = \sqrt{(-4)^2 + 3^2}[/tex]
[tex]d = \sqrt{16 + 9}[/tex]
[tex]d = \sqrt{25}[/tex]
[tex]d =5[/tex]
From the question, we have:
[tex]1\ unit = 6.4\ miles[/tex]
So:
[tex]d =5 * 6.4\ miles[/tex]
[tex]d =32\ miles[/tex]