Respuesta :

Answer:

[tex]d = 0.112* 10^3[/tex]

Step-by-step explanation:

Given

[tex]h = 8.4 * 10^3[/tex]

[tex]d = \sqrt{\frac{3h}{2}}[/tex]

Required

Find d

We have:

[tex]d = \sqrt{\frac{3h}{2}}[/tex]

Substitute: [tex]h = 8.4 * 10^3[/tex]

[tex]d = \sqrt{\frac{3*8.4 * 10^3}{2}}[/tex]

[tex]d = \sqrt{\frac{25.2 * 10^3}{2}}[/tex]

[tex]d = \sqrt{12.6 * 10^3}[/tex]

Express as:

[tex]d = \sqrt{1.26 *10* 10^3}[/tex]

[tex]d = \sqrt{1.26 *10^4}[/tex]

Split

[tex]d = \sqrt{1.26} *\sqrt{10^4}[/tex]

[tex]d = 1.122* 10^2[/tex]

To write in form of: [tex]a * 10^b[/tex]

The value of a must be: [tex]0 \le a \le 1[/tex]

So, we have:

[tex]d = 0.1122* 10 * 10^2[/tex]

[tex]d = 0.1122* 10^3[/tex]

Approximate

[tex]d = 0.112* 10^3[/tex]