Answer:
[tex]d = 0.112* 10^3[/tex]
Step-by-step explanation:
Given
[tex]h = 8.4 * 10^3[/tex]
[tex]d = \sqrt{\frac{3h}{2}}[/tex]
Required
Find d
We have:
[tex]d = \sqrt{\frac{3h}{2}}[/tex]
Substitute: [tex]h = 8.4 * 10^3[/tex]
[tex]d = \sqrt{\frac{3*8.4 * 10^3}{2}}[/tex]
[tex]d = \sqrt{\frac{25.2 * 10^3}{2}}[/tex]
[tex]d = \sqrt{12.6 * 10^3}[/tex]
Express as:
[tex]d = \sqrt{1.26 *10* 10^3}[/tex]
[tex]d = \sqrt{1.26 *10^4}[/tex]
Split
[tex]d = \sqrt{1.26} *\sqrt{10^4}[/tex]
[tex]d = 1.122* 10^2[/tex]
To write in form of: [tex]a * 10^b[/tex]
The value of a must be: [tex]0 \le a \le 1[/tex]
So, we have:
[tex]d = 0.1122* 10 * 10^2[/tex]
[tex]d = 0.1122* 10^3[/tex]
Approximate
[tex]d = 0.112* 10^3[/tex]