Answer:
[tex]\frac{(x - 2)^{2} }{4 } + \frac{(y - 4)^{2} }{9 } = 1[/tex]
Step-by-step explanation:
Equation of an ellipse elongated vertically in standard form is[tex]\frac{(x - h)^{2} }{b^{2} } + \frac{(y - k)^{2} }{a^{2} } = 1[/tex]: for where (h, k) is the center, a is the distance
from the center to a vertex, b is the distance from the center to a co-vertex.
In your problem, the center is at (2, 4), a = 3 and b = 2
So, the equation is [tex]\frac{(x - 2)^{2} }{2^{2} } + \frac{(y - 4)^{2} }{3^{2} } = 1[/tex]
[tex]\frac{(x - 2)^{2} }{4 } + \frac{(y - 4)^{2} }{9 } = 1[/tex]