Answer: 72.78% of the drivers are traveling between 70 and 80 miles per hour based on this distribution.
Step-by-step explanation:
Let X be a random variable that represents the speed of the drivers.
Given: population mean : M = 72 miles ,
Standard deviation: s= 3.2 miles
The probability that the drivers are traveling between 70 and 80 miles per hour based on this distribution:
[tex]P(70\leq X\leq 80)=P(\frac{70-72}{3.2}\leq \frac{X-M}{s}\leq\frac{80-72}{3.2})\\\\= P(-0.625\leq Z\leq 2.5)\ \ \ \ \ [Z=\frac{X-M}{s}]\\\\=P(Z\leq2.5)-P(Z\leq -0.625)\\\\\\ =0.9938-0.2660\ \ \ [\text{Using p-value calculator}]\\\\=0.7278[/tex]
Hence, 72.78% of the drivers are traveling between 70 and 80 miles per hour based on this distribution.