Respuesta :

Space

Answer:

[tex]\displaystyle \lim_{x \to -8} f(x) = 1[/tex]

General Formulas and Concepts:

Calculus

Limits

Limit Rule [Constant]:                                                                                             [tex]\displaystyle \lim_{x \to c} b = b[/tex]

Limit Rule [Variable Direct Substitution]:                                                             [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Limit Property [Addition/Subtraction]:                                                                   [tex]\displaystyle \lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)[/tex]

Step-by-step explanation:

*Note:

When you graph the function, the left-hand and right-hand limit does equal the same.

Step 1: Define

[tex]\displaystyle f(x) = \left \{ {{x + 9, x < -8} \atop {-7 - x, x \geq -8}} \right.[/tex]

Step 2: Find Limit

  1. Substitute in function [Limit]:                                                                        [tex]\displaystyle \lim_{x \to -8} f(x) = \lim_{x \to -8} (-7 - x)[/tex]
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           [tex]\displaystyle \lim_{x \to -8} f(x) = -7 - (-8)[/tex]
  3. Simplify:                                                                                                         [tex]\displaystyle \lim_{x \to -8} f(x) = 1[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits