Answer:
Rate = 14.07%
Step-by-step explanation:
[tex]A= P(1+\frac{r}{n})^{nt}[/tex]
A= 3500
P= 2000
n = 12
t = 4
[tex]3500= 2000(1+\frac{r}{12})^{4 \times 12}\\\\\frac{3500}{2000} = (1+\frac{r}{12})^{48}\\\\\frac{7}{4} = (1+\frac{r}{12})^{48}\\\\1.75 = (1+\frac{r}{12})^{48}\\\\\sqrt[48]{1.75} = (1+\frac{r}{12})\\\\\sqrt[48]{1.75}-1 = \frac{r}{12}\\\\0.01172688 = \frac{r}{12}\\\\r = 0.01172688 \times 12 = 0.14072267\\\\r \% = 14.07%[/tex]