Respuesta :
Answer:
[tex]P(x =2) = 0.3020[/tex]
Step-by-step explanation:
Given
[tex]p =20\% = 0.20[/tex]
[tex]n = 10[/tex]
Required
[tex]P(x = 2)[/tex]
This question is an illustration of binomial distribution where:
[tex]P(X = x) = ^nC_x * p^x * (1 - p)^{n-x[/tex]
So, we have:
[tex]P(x =2) = ^{10}C_2 * 0.20^2 * (1 - 0.20)^{10-2}[/tex]
[tex]P(x =2) = ^{10}C_2 * 0.20^2 * 0.80^8[/tex]
This gives
[tex]P(x =2) = \frac{10!}{(10 - 2)!2!} * 0.20^2 * 0.80^8[/tex]
[tex]P(x =2) = \frac{10!}{8!2!} * 0.20^2 * 0.80^8[/tex]
Expand
[tex]P(x =2) = \frac{10*9*8!}{8!2*1} * 0.20^2 * 0.80^8[/tex]
[tex]P(x =2) = \frac{10*9}{2} * 0.20^2 * 0.80^8[/tex]
[tex]P(x =2) = 45 * 0.20^2 * 0.80^8[/tex]
[tex]P(x =2) = 0.3020[/tex]
The probability that 2 out of the next ten customers will order the chef special is 0.3020. and this can be determined by using the binomial distribution.
Given :
- 20% of the patron's order the chef's special.
- Sample size, n = 10
To determine the probability formula of the binomial distribution is used, that is:
[tex]\rm P(x = r) = \; ^nC_r \times p^r \times (1 - p)^{n-r}[/tex]
Now, at n = 10 and r = 2, the probability is given by:
[tex]\rm P(x = 2) = \; ^{10}C_2 \times (0.2)^2 \times (1 - 0.2)^{10-2}[/tex]
[tex]\rm P(x = 2) = \; ^{10}C_2 \times (0.2)^2 \times (0.8)^{10-2}[/tex]
[tex]\rm P(x = 2) = \; \dfrac{10!}{(10-2)!\times 2!} \times (0.2)^2 \times (0.8)^{8}[/tex]
[tex]\rm P(x = 2) = \; 45 \times (0.2)^2 \times (0.8)^{8}[/tex]
P(x = 2) = 0.3020
The probability that 2 out of the next ten customers will order the chef special is 0.3020.
For more information, refer to the link given below:
https://brainly.com/question/1957976