Respuesta :
Answer:
a) the heat exchanger area required for the evaporator is 11178.236 m²
b) the required flow rate is 1993630.38 kg/s
Explanation:
Given the data in the question;
Water temperature near the surface = 300 K
temperature at reasonable depths ( cold ) = 280 K
power plant output W' = 2 MW
efficiency η = 3% = 0.03
we know that; efficiency η = W'[tex]_{power-out[/tex] / Q[tex]_{supplied[/tex]
we substitute
0.03 = 2 / Q[tex]_{supplied[/tex]
Q[tex]_{supplied[/tex] = 2 / 0.03
Q[tex]_{supplied[/tex] = 66.667 MW = 66.667 × 10⁶ Watt
T[tex]h_{in[/tex] = 300 K T[tex]h_{out[/tex] = 292 K
T[tex]c_{in[/tex] = 290 K T[tex]c_{out[/tex] = 290 K
Now, Heat transfer in evaporator;
Q = UA( LMTD )
so
LMTD = (ΔT₁ - ΔT₂) / ln( ΔT₁ / ΔT₂ )
first we get ΔT₁ and ΔT₂
ΔT₁ = T[tex]h_{in[/tex] - T[tex]c_{out[/tex] = 300 - 290 = 10 K
ΔT₂ = T[tex]h_{out[/tex] - T[tex]c_{in[/tex] = 292 - 290 = 2 K
so we substitute into our equation;
LMTD = (10 - 2) / ln( 10 / 2 )
LMTD = 8 / ln( 5 )
LMTD = 8 / 1.6094379
LMTD = 4.97
a) Heat transfer Area will be;
Q[tex]_H[/tex] = UA( LMTD )
we substitute
66.667 × 10⁶ = 1200 × A × 4.97
66.667 × 10⁶ = 5964 × A
A = (66.667 × 10⁶) / 5964
A = 11178.236 m²
Therefore, the heat exchanger area required for the evaporator is 11178.236 m²
b) Flow rate
we know that;
Q[tex]_H[/tex] = m'C[tex]_P[/tex]( [tex]T_{in[/tex] - [tex]T_{out[/tex] )
specific heat capacity of water Cp = 4.18 (kJ/kg∙°C)
we substitute
66.667 × 10⁶ = m' × 4.18 × ( 300 - 292 )
66.667 × 10⁶ = m' × 33.44
m' = ( 66.667 × 10⁶ ) / 33.44
m' = 1993630.38 kg/s
Therefore, the required flow rate is 1993630.38 kg/s