Suppose that a flow network G=(V,E)G = (V, E)G=(V,E) violates the assumption that the network contains a path s⇝v⇝ts \leadsto v \leadsto ts⇝v⇝t for all vertices v∈Vv \in Vv∈V. Let uuu be a vertex for which there is no path s⇝u⇝ts \leadsto u \leadsto ts⇝u⇝t. Show that there must exist a maximum flow fff in GGG such that f(u,v)=f(v,u)=0f(u, v) = f(v, u) = 0f(u,v)=f(v,u)=0 for all vertices v∈Vv \in Vv∈V.
a. True
b. False