Respuesta :
Answer:
[tex]P(Not\ 2019) = \frac{2}{7}[/tex]
Step-by-step explanation:
Given
[tex]n(2019)= 3[/tex]
[tex]n(2001)= 2\\[/tex]
[tex]n(2008)= 2[/tex]
[tex]n = 7[/tex] --- total
Required
[tex]P(Not\ 2019)[/tex]
When two quarters not minted in 2019 are selected, the sample space is:
[tex]S = \{(2001,2001),(2001,2008),(2008,2001),(2008,2008)\}[/tex]
So, the probability is:
[tex]P(Not\ 2019) = P(2001,2001)\ or\ P(2001,2008)\ or\ P(2008,2001)\ or\ P(2008,2008)[/tex]
[tex]P(Not\ 2019) = P(2001,2001) + P(2001,2008) + P(2008,2001) + P(2008,2008)[/tex]
[tex]P(2001,2001) = P(2001) * P(2001)[/tex]
Since it is a selection without replacement, we have:
[tex]P(2001,2001) = \frac{n(2001)}{n} * \frac{n(2001)-1}{n - 1}[/tex]
[tex]P(2001,2001) = \frac{2}{7} * \frac{2-1}{7 - 1}[/tex]
[tex]P(2001,2001) = \frac{2}{7} * \frac{1}{6}[/tex]
[tex]P(2001,2001) = \frac{1}{7} * \frac{1}{3}[/tex]
[tex]P(2001,2001) = \frac{1}{21}[/tex]
[tex]P(2001,2008) = P(2001) * P(2008)[/tex]
Since it is a selection without replacement, we have:
[tex]P(2001,2008) = \frac{n(2001)}{n} * \frac{n(2008)}{n - 1}[/tex]
[tex]P(2001,2008) = \frac{2}{7} * \frac{2}{7 - 1}[/tex]
[tex]P(2001,2008) = \frac{2}{7} * \frac{2}{6}[/tex]
[tex]P(2001,2008) = \frac{2}{7} * \frac{1}{3}[/tex]
[tex]P(2001,2008) = \frac{2}{21}[/tex]
[tex]P(2008,2001) = P(2008) * P(2001)[/tex]
Since it is a selection without replacement, we have:
[tex]P(2008,2001) = \frac{n(2008)}{n} * \frac{n(2001)}{n - 1}[/tex]
[tex]P(2008,2001) = \frac{2}{7} * \frac{2}{7 - 1}[/tex]
[tex]P(2008,2001) = \frac{2}{7} * \frac{2}{6}[/tex]
[tex]P(2008,2001) = \frac{2}{7} * \frac{1}{3}[/tex]
[tex]P(2008,2001) = \frac{2}{21}[/tex]
[tex]P(2008,2008) = P(2008) * P(2008)[/tex]
Since it is a selection without replacement, we have:
[tex]P(2008,2008) = \frac{n(2008)}{n} * \frac{n(2008)-1}{n - 1}[/tex]
[tex]P(2008,2008) = \frac{2}{7} * \frac{2-1}{7 - 1}[/tex]
[tex]P(2008,2008) = \frac{2}{7} * \frac{1}{6}[/tex]
[tex]P(2008,2008) = \frac{1}{7} * \frac{1}{3}[/tex]
[tex]P(2008,2008) = \frac{1}{21}[/tex]
So:
[tex]P(Not\ 2019) = P(2001,2001) + P(2001,2008) + P(2008,2001) + P(2008,2008)[/tex]
[tex]P(Not\ 2019) = \frac{1}{21} + \frac{2}{21} +\frac{2}{21} +\frac{1}{21}[/tex]
Take LCM
[tex]P(Not\ 2019) = \frac{1+2+2+1}{21}[/tex]
[tex]P(Not\ 2019) = \frac{6}{21}[/tex]
Simplify
[tex]P(Not\ 2019) = \frac{2}{7}[/tex]