Respuesta :
Answer:
- D. A = x² + 44x = 808
Step-by-step explanation:
Check if the relationship is linear. Verify the difference between areas.
We can see the difference is not common.
It means we can exclude options B and C.
The remaining options are quadratic (A and D).
Try the last column with option A:
- 4813 = 45² + 1908
- 4813 = 3933
- False
Verify the last option:
- 4813 = 45² + 44*45 + 808
- 4813 = 4813
- Correct
We can check and confirm the other columns are correct as well.
Answer:
Solution given:
for 1st
A=x²+1908
when x=25
A=25²+1908=2533 satisfied for 1st
when x=30
A=30²+1908=28008[not satisfied]
result : not satisfied
for 2,nd
A=495x+2038
when
x=25
A=495×25+2038=14413[not satisfied]
result : not satisfied
.for 3rd.
A=99x+58
when
x=25
A=99×25+58=2533[satisfied]
when x=30
A=99×30+58=3028[satisfied]
when x=35
A=99×35+58=3523[not satisfied}
result; ,not satisfied
for 4th
A=x²+44x+808
when
x=25
A=25²+44×25+808=2533{satisfied}
when x=30
A=30²+44×30+808=3028[satisfied]
when x=35
A=35²+44×35+808=3573[satisfied]
when
x=40
A=40²+44×40+808=4168{satisfied}
when x=45.
A=45²+44×45+808=4813{satisfied}
result :satisfied
so..correct option is D.A=x²+44x+808