Answer:
the minimum expected elastic modulus is 372.27 Gpa
Explanation:
First we put down the data in the given question;
Volume fraction [tex]V_f[/tex] = 0.84
Volume fraction of matrix material [tex]V_m[/tex] = 1 - 0.84 = 0.16
Elastic module of particle [tex]E_f[/tex] = 682 GPa
Elastic module of matrix material [tex]E_m[/tex] = 110 GPa
Now, the minimum expected elastic modulus will be;
[tex]E_{CT[/tex] = ([tex]E_f[/tex] × [tex]E_m[/tex] ) / ( [tex]E_f[/tex][tex]V_m[/tex] + [tex]E_m[/tex] [tex]V_f[/tex] )
so we substitute in our values
[tex]E_{CT[/tex] = (682 × 110 ) / ( [ 682 × 0.16 ] + [ 110 × 0.84] )
[tex]E_{CT[/tex] = ( 75,020 ) / ( 109.12 + 92.4 )
[tex]E_{CT[/tex] = 75,020 / 201.52
[tex]E_{CT[/tex] = 372.27 Gpa
Therefore, the minimum expected elastic modulus is 372.27 Gpa