Answer:
m<RPQ = 22°
Step-by-step explanation:
Given:
m<SRQ = 90°
PS = PQ
m<SQR = 46°
Required:
m<RPQ
Solution:
m<SQR + m<SRQ + m<RSQ = 180°
Substitute
46° + 90° + m<RSQ = 180°
m<RSQ = 180° - 136°
m<RSQ = 44°
Find m<PSQ:
m<PSQ = 180° - m<RSQ (Angles on a straight line
m<PSQ = 180° - 44° (Substitution)
m<PSQ = 136°
Find m<RPQ:
∆QSP is an isosceles triangle with two equal base angles. Therefore:
m<RPQ = ½(180° - 136°)
m<RPQ = 22°