Answer: 37, [tex]\frac{x+2}{7}[/tex]
Step-by-step explanation:
Given
[tex]f(x)=7x-2\\g(x)=x^2+1\\h(x)=3x[/tex]
now,
[tex]g(h(x))=(3x)^2+1\\g(h(x))=9x^2+1[/tex]
for x=2
[tex]g(h(2))=9\cdot (2)^2+1\\g(h(2))=36+1\\g(h(2))=37[/tex]
Inverse of [tex]f(x)[/tex] is given by
[tex]y=7x-2\\x=\dfrac{y+2}{7}\\\\f^{-1}(x)=\dfrac{x+2}{7}[/tex]