app 19.study
Tools
Tools
Probability
Jacob performed an experiment with a weighted die, numbered 1 to 6. He rolled the die 125 times and recorded the results.
Complete the table below.
0.232
37
24
0.176
18
0.048
0.104
22
Result of Roll
Frequency
Experimental
Probability
1
2
13
3
0.144
4
29
5
0.296
6
Reset
Submit

Respuesta :

Answer:

[tex]1 \to 22 \to 0.176[/tex]

[tex]2 \to 13 \to 0.104[/tex]

[tex]3 \to 18 \to 0.144[/tex]

[tex]4 \to 29 \to 0.232[/tex]

[tex]5 \to 37 \to 0.296[/tex]

[tex]6 \to 6 \to 0.048[/tex]

Step-by-step explanation:

Given

[tex]n = 125[/tex]

See attachment for proper table

Required

Complete the table

Experimental probability is calculated as:

[tex]Pr = \frac{Frequency}{n}[/tex]

We use the above formula when the frequency is known.

For result of roll 2, 4 and 6

The frequencies are 13, 29 and 6, respectively

So, we have:

[tex]Pr(2) = \frac{13}{125} = 0.104[/tex]

[tex]Pr(4) = \frac{29}{125} = 0.232[/tex]

[tex]Pr(6) = \frac{6}{125} = 0.048[/tex]

When the frequency is to be calculated, we use:

[tex]Pr = \frac{Frequency}{n}[/tex]

[tex]Frequency = n * Pr[/tex]

For result of roll 3 and 5

The probabilities are 0.144 and 0.296, respectively

So, we have:

[tex]Frequency(3) = 125 * 0.144 = 18[/tex]

[tex]Frequency(5) = 125 * 0.296 = 37[/tex]

For roll of 1 where the frequency and the probability are not known, we use:

[tex]Total \ Frequency = 125[/tex]

So:

Frequency(1) added to others must equal 125

This gives:

[tex]Frequency(1) + 13 + 18 + 29 + 37 + 6 = 125[/tex]

[tex]Frequency(1) + 103 = 125[/tex]

Collect like terms

[tex]Frequency(1) =- 103 + 125[/tex]

[tex]Frequency(1) =22[/tex]

The probability is then calculated as:

[tex]Pr(1) = \frac{22}{125}[/tex]

[tex]Pr(1) = 0.176[/tex]

So, the complete table is:

[tex]1 \to 22 \to 0.176[/tex]

[tex]2 \to 13 \to 0.104[/tex]

[tex]3 \to 18 \to 0.144[/tex]

[tex]4 \to 29 \to 0.232[/tex]

[tex]5 \to 37 \to 0.296[/tex]

[tex]6 \to 6 \to 0.048[/tex]

Ver imagen MrRoyal