Respuesta :

Answer:

[tex]x \to f(x)[/tex]

[tex]0.25 \to -1[/tex]

[tex]0.5 \to -0.5[/tex]

[tex]1 \to 0[/tex]

[tex]2 \to 0.5[/tex]

[tex]4 \to 1[/tex]

[tex]8 \to 1.5[/tex]

Step-by-step explanation:

Given

[tex]f(x) = log_4(x)[/tex]

[tex]x = 0.5[/tex]

[tex]f(x) = log_4(x)[/tex]

[tex]f(0.5) = log_4(0.5)[/tex]

Apply law of logarithm

[tex]f(0.5) = \frac{log(0.5)}{log(4)}[/tex]

Using a calculator, we have:

[tex]f(0.5) = -0.5[/tex]

[tex]x = 1[/tex]

[tex]f(x) = log_4(x)[/tex]

[tex]f(1) = log_4(1)[/tex]

Express 1 as 4^0

[tex]f(1) = log_4(4^0)[/tex]

Apply law of logarithm

[tex]f(1) = 0*log_4(4)[/tex]

[tex]f(1) = 0[/tex]

[tex]x = 2[/tex]

[tex]f(x) = log_4(x)[/tex]

[tex]f(2) = log_4(2)[/tex]

Apply law of logarithm

[tex]f(2) = \frac{log(2)}{log(4)}[/tex]

Using a calculator, we have:

[tex]f(2) = 0.5[/tex]

[tex]x = 4[/tex]

[tex]f(x) = log_4(x)[/tex]

[tex]f(4) = log_4(4)[/tex]

[tex]log_a(a) = 1[/tex]

So:

[tex]f(4) = 1[/tex]

[tex]x = 8[/tex]

[tex]f(x) = log_4(x)[/tex]

[tex]f(8) = log_4(8)[/tex]

Apply law of logarithm

[tex]f(8) = \frac{log(8)}{log(4)}[/tex]

Using a calculator, we have:

[tex]f(8) = 1.5[/tex]

So, the complete table is:

[tex]x \to f(x)[/tex]

[tex]0.25 \to -1[/tex]

[tex]0.5 \to -0.5[/tex]

[tex]1 \to 0[/tex]

[tex]2 \to 0.5[/tex]

[tex]4 \to 1[/tex]

[tex]8 \to 1.5[/tex]