Respuesta :

Answer:

[tex]f^{-1}(x) = (x + 8)^2[/tex]

[tex]x \ge -8[/tex]

Step-by-step explanation:

Given

[tex]f(x) = \sqrt x - 8[/tex]

Solving (a): [tex]f^{-1}(x)[/tex]

We have:

[tex]f(x) = \sqrt x - 8[/tex]

Express f(x) as y

[tex]y = \sqrt x - 8[/tex]

Swap x and y

[tex]x = \sqrt y - 8[/tex]

Add 8 to [tex]both\ sides[/tex]

[tex]x + 8 = \sqrt y - 8 + 8[/tex]

[tex]x + 8 = \sqrt y[/tex]

Square both sides

[tex](x + 8)^2 = y[/tex]

Rewrite as:

[tex]y = (x + 8)^2[/tex]

Express y as: [tex]f^{-1}(x)[/tex]

[tex]f^{-1}(x) = (x + 8)^2[/tex]

To determine the domain, we have:

The original function is [tex]f(x) = \sqrt x - 8[/tex]

The range of this is: [tex]f(x) \ge -8[/tex]

The [tex]domain[/tex] of the [tex]inverse[/tex] function is the [tex]range[/tex] of the [tex]original[/tex] function.

Hence, the domain is:

[tex]x \ge -8[/tex]