Answer:
Step-by-step explanation:
11). [tex]p^{\frac{3}{5}}\times \sqrt[10]{p^4}[/tex]
= [tex]p^{\frac{3\times 2}{5\times 2}}\times \sqrt[10]{p^4}[/tex]
= [tex]p^{\frac{6}{10}}\times \sqrt[10]{p^4}[/tex]
= [tex]\sqrt[10]{p^{6}}\times\sqrt[10]{p^4}[/tex]
= [tex]\sqrt[10]{p^{10}}[/tex]
= p
Yes
12). [tex]p^{\frac{3}{5}}\times \sqrt[10]{p^4}=\sqrt[5]{p^3} \times \sqrt[10]{p^4}[/tex]
But, [tex]\sqrt[5]{p^3} \times \sqrt[10]{p^4}\neq \sqrt[3]{p^5}\times \sqrt[10]{p^4}[/tex]
No
13). Since, [tex]p^{\frac{3}{5}}\times \sqrt[10]{p^4}=p[/tex]
Simplify the given expression,
[tex]\sqrt[10]{p^{\frac{23}{5}}}[/tex]
[tex]\sqrt[10]{p^{\frac{23}{5}}} =p^{\frac{23}{50}}[/tex]
No.
14). [tex]p^{\frac{12}{50}}=p^{\frac{6}{25}}\neq p[/tex]
No.
15). [tex]p^{24}\neq p[/tex]
No.