Answer:
4.71 minutes
Step-by-step explanation:
Incomplete question [See comment for complete question]
Given
Shape: Cone
[tex]r = 3[/tex] -- radius
[tex]h = 7[/tex] --- height
[tex]Rate = 14in^3/min[/tex]
Required
Time to pass out all liquid
First, calculate the volume of the cone.
This is calculated as:
[tex]V = \frac{1}{3} \pi r^2h[/tex]
This gives:
[tex]V = \frac{1}{3} * 3.14 * 3^2 * 7[/tex]
[tex]V = \frac{1}{3} * 197.82[/tex]
[tex]V = 65.94in^3[/tex]
To calculate the time, we make use of the following rate formula.
[tex]Rate = \frac{Volume}{Time}[/tex]
Make Time the subject
[tex]Time= \frac{Volume}{Rate }[/tex]
This gives:
[tex]Time= \frac{65.94in^3}{14in^3/min}[/tex]
[tex]Time= \frac{65.94in^3}{14in^3}min[/tex]
Cancel out the units
[tex]Time= \frac{65.94}{14} min[/tex]
[tex]Time= 4.71 min\\[/tex]