Respuesta :

Answer:

(a) Domain: All real numbers except -2

(b) [tex]f(x) > -4[/tex]

Step-by-step explanation:

Given

See attachment for f(x)

Solving (a): The domain

From the attached image, we have:

[tex]f(x) = -x - 2, x <-2[/tex]

[tex]f(x) = -x^2, -2 < x < 0[/tex]

[tex]f(x) = x, x \ge 0[/tex]

To get the domain, we consider the inequalities attached to each of the piece-wise function

[tex]x < -2[/tex]

This implies that the values of x is less than -2 i.e.

[tex]x = \{.......,-4,-3\}[/tex]

[tex]-2< x<0[/tex]

This implies that x is greater than -2 and less than 0 i.e.

[tex]x = \{-1\}[/tex]

[tex]x \ge 0[/tex]

This implies that x is greater than or equal to 0 i.e.

[tex]x =\{0,1,2,3,....\}[/tex]

If these values of x are merged, we have:

[tex]x = \{.......,-4,-3,-1,0,1,2,3.....\}[/tex]

[tex]x = \{-\infty,..,-4,-3,-1,0,1,2,3,...,\infty\}[/tex]

-2 is not included in the above values of x.

Solving (b): The range

From the attached image, we have:

[tex]f(x) = -x - 2, x <-2[/tex]

[tex]f(x) = -x^2, -2 < x < 0[/tex]

[tex]f(x) = x, x \ge 0[/tex]

Substitute the greatest value of x in each piece-wise function.

[tex]f(x) = -x - 2, x <-2[/tex]

[tex]x=-2[/tex]

So;

[tex]f(-2) = -2-2 = -4[/tex]

[tex]f(x) = -x^2, -2 < x < 0[/tex]

[tex]x = -2[/tex]

So:

[tex]f(-2) = -2^2 = -4[/tex]

[tex]f(x) = x, x \ge 0[/tex]

[tex]x = \infty[/tex]

So;

[tex]f(\infty) = \infty[/tex]

We have:

[tex]f(-2) =-4[/tex]

[tex]f(-2) =-4[/tex]

[tex]f(\infty) = \infty[/tex]

The smallest value of f(x) is -4

Hence, the range is:

[tex]f(x) > -4[/tex]

Ver imagen MrRoyal

Answer:

Domain is

B)

(-infinity, -2) U (-2, infinity)

Range is (-4, infinity)

Step-by-step explanation:

go it correct

edge2022