Respuesta :

Answer:

i think its help..............

Ver imagen ederalorena8
Nayefx

Answer:

[tex] \displaystyle \sin (x) - \frac{ { \sin}^{3} (x)}{3} + \rm C[/tex]

Step-by-step explanation:

we would like to integrate the following integration

[tex] \displaystyle \int \cos ^{3} (x) dx[/tex]

in order to do so rewrite

[tex] \displaystyle \int \cos ^{2} (x) \cos(x) dx[/tex]

we can also rewrite cos²(x) by using trigonometric indentity

[tex] \displaystyle \int( 1 - \sin ^{2} (x) )\cos(x) dx[/tex]

to apply u-substitution we'll choose

[tex] \rm \displaystyle u = \sin ^{} (x) \quad \text{and} \quad du = \cos(x) dx[/tex]

thus substitute:

[tex] \displaystyle \int( 1 - {u}^{2} )du[/tex]

apply substraction integration and:

[tex] \displaystyle \int 1du - \int {u}^{2} du[/tex]

use constant integration rule:

[tex] \displaystyle u - \int {u}^{2} du[/tex]

use exponent integration rule:

[tex] \displaystyle u - \frac{ {u}^{3} }{3} [/tex]

back-substitute:

[tex] \displaystyle \sin (x) - \frac{ { \sin}^{3} (x)}{3} [/tex]

finally we of course have to add constant of integration:

[tex] \displaystyle \sin (x) - \frac{ { \sin}^{3} (x)}{3} + \rm C[/tex]