Answer:
The answer is "[tex]\bold{7.18 \times 10^3 \ m^2}[/tex]".
Explanation:
The efficiency system:
[tex]\eta =\frac{P_{req}}{P} \times 10\\\\P =\frac{P_{req}}{\eta} \times 10\\\\[/tex]
[tex]=(\frac{2.20 \times 10^6 \ W}{30})\times 100\\\\=(\frac{220 \times 10^6 \ W}{30})\\\\=(\frac{22 \times 10^6 \ W}{3})\\\\=7.33 \times 10^6 \ W[/tex]
Using formula:
[tex]A=\frac{P}{I}[/tex]
Effective area:
[tex]A= \frac{7.33 \times 10^6 \ W}{1020\ \frac{W}{m^2}}\\\\[/tex]
[tex]=\frac{7.33 \times 10^6 }{1020}\ m^2 \\\\ =0.0071862 \times 10^6 \ m^2 \\\\=7.1862 \times 10^3 \ m^2 \\\\[/tex]