What is the shortest possible perimeter for an arrangement with an area of 15 square feet? Please get me the answer as soon as possible!!!!!!!!!!!

Respuesta :

Answer:

The shortest possible perimeter is: [tex]4\sqrt{15}[/tex]

Step-by-step explanation:

Given

[tex]A = 15[/tex] --- area

Required

Find the shortest possible perimeter

Area is calculated as:

[tex]A=l * b[/tex]

This gives:

[tex]l * b = 15[/tex]

Make l the subject

[tex]l=\frac{15}{b}[/tex]

Perimeter is calculated as:

[tex]P =2(l + b)[/tex]

Substitute [tex]l=\frac{15}{b}[/tex]

[tex]P =2(\frac{15}{b} + b})[/tex]

Rewrite as:

[tex]P =2(15b^{-1} + b)[/tex]

Differentiate and minimize;

[tex]P' =2(-15b^{-2} + 1)[/tex]

Minimize by equating P' to 0

[tex]2(-15b^{-2} + 1) = 0[/tex]

Divide through by 2

[tex]-15b^{-2} + 1 = 0[/tex]

[tex]-15b^{-2} = -1[/tex]

Divide through by -1

[tex]15b^{-2} = 1[/tex]

Rewrite as:

[tex]\frac{15}{b^2} = 1[/tex]

Solve for b^2

[tex]b^2 = \frac{15}{1}[/tex]

[tex]b^2 = 15[/tex]

Solve for b

[tex]b = \sqrt{15[/tex]

Recall that: [tex]P =2(\frac{15}{b} + b})[/tex]

[tex]P = 2 * (\frac{15}{\sqrt{15}} + \sqrt{15})[/tex]

[tex]P = 2 * (\sqrt{15} + \sqrt{15})[/tex]

[tex]P = 2 * (2\sqrt{15})[/tex]

[tex]P = 4\sqrt{15}[/tex]

The shortest possible perimeter is: [tex]4\sqrt{15}[/tex]