Answer:
Var = 6.31
Step-by-step explanation:
The Value at Risk (VAR)
[tex]P(X < x_o) = 0.01[/tex]
By using normal distribution
Mean [tex]\mu[/tex] = 10
Variance = 49
Standard deviation [tex]\sigma = \sqrt{49 } = 7[/tex]
This implies that:
[tex]P\Big ( \dfrac{X - \mu}{\sigma } < \dfrac{x_o - \mu }{\sigma}\Big) = 0.01 \\ \\ P\Big ( Z < \dfrac{x_o - \mu }{\sigma}\Big) = 0.01 \\ \\ \dfrac{x_o - \mu }{\sigma} = invNorm(0.01) \\ \\ x_o = \mu + \sigma \times invNorm (0.01)[/tex]
Using the z-table;
[tex]x_o = 10 + 7 \times (-2.33) \\ \\ x_o = -6.3100[/tex]
Hence, there exist 1% chance that X < -6.31 or the loss from investment is > 6.31
From the calculated value above;
[tex]V = \mu -\sigma \times 2.33[/tex]; Since the result is negative, then it shows that the greater the value(i.e the positive or less negative it is ) the lower is the value of VAR. Thus, the least value of VAR is accepted by the largest value of
[tex]min( \mu -\sigma \times2.33,0)[/tex]