Answer:
New cost of jacket = [tex]1.2x=1.2\times 600=720\ \text{sh}[/tex]
New costs of skirt = [tex]1.2y=1.2\times 200=240\ \text{sh}[/tex]
Step-by-step explanation:
Let original cost of jacket = [tex]x[/tex]
original cost of skirt = [tex]y[/tex]
The equation will be
[tex]2x+3y=1800[/tex]
New cost of jacket = [tex]1.2x[/tex]
New costs of skirt = [tex]1.2y[/tex]
The equation will be
[tex]6(1.2x)+2(1.2y)=4800\\\Rightarrow 7.2x+2.4y=4800[/tex]
The equations are
[tex]2x+3y=1800[/tex] [tex]\times 0.8[/tex]
[tex]7.2x+2.4y=4800[/tex]
[tex]1.6x+2.4y=1440[/tex]
[tex]7.2x+2.4y=4800[/tex]
Subtracting the above two equations we get
[tex]-5.6x=-3360\\\Rightarrow x=\dfrac{3360}{5.6}\\\Rightarrow x=600[/tex]
[tex]7.2\times 600+2.4y=4800\\\Rightarrow y=\dfrac{4800-7.2\times 600}{2.4}\\\Rightarrow y=200[/tex]
New cost of jacket = [tex]1.2x=1.2\times 600=720\ \text{sh}[/tex]
New costs of skirt = [tex]1.2y=1.2\times 200=240\ \text{sh}[/tex].