Respuesta :

Given:

The four table of values.

To find:

The table whose linear function has slope 2.

Solution:

Slope formula:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

Consider any two points from each table and find the slope for each table.

For table 1, the two points are (2,1) and (6,-1). So, the slope of the linear function is:

[tex]m=\dfrac{-1-1}{6-2}[/tex]

[tex]m=\dfrac{-2}{4}[/tex]

[tex]m=\dfrac{-1}{2}[/tex]

For table 2, the two points are (0,8) and (2,4). So, the slope of the linear function is:

[tex]m=\dfrac{4-8}{2-0}[/tex]

[tex]m=\dfrac{-4}{2}[/tex]

[tex]m=2[/tex]

For table 3, the two points are (-4,4) and (-2,5). So, the slope of the linear function is:

[tex]m=\dfrac{5-4}{-2-(-4)}[/tex]

[tex]m=\dfrac{1}{-2+4}[/tex]

[tex]m=\dfrac{1}{2}[/tex]

For table 4, the two points are (-2,0) and (0,4). So, the slope of the linear function is:

[tex]m=\dfrac{4-0}{0-(-2)}[/tex]

[tex]m=\dfrac{4}{2}[/tex]

[tex]m=2[/tex]

Table 4 is the only table that represents a linear function whose slope is 2.

Therefore, the correct option is 4, Table 4.