Answer:
36.84km ; 252.13°
Step-by-step explanation:
Using the cosine rule :
a² = b² + c² - 2bcCosA
a² = 28² + 43² - (2*28*43)*Cos58
a² = 2633 - 1276.0455
a² = 1356.9544
a = sqrt(1356.9544)
a = 36.8368
a = 36.84 km
For the bearing,
Obtain the angle at B using the Sine rule
a/SinA = b/SinB
36.84/sin58 = 28/sinB
36.84*SinB = 28 * Sin58
SinB = 23.745346 / 36.84
SinB = 0.6445533
B = sin^-1(0.6445533)
B = 40.13°
180 + (32 + 40.13)
180 - 72.13
= 252.13°