Respuesta :

Answer:

1) [tex]9^{2}=81[/tex]

2) [tex]7=log_{2}(128)[/tex]

Step-by-step explanation:

1)

We need to use the property of power and logarithms, particularly this:

[tex]a=x^{log_{x}(a)}[/tex] (1)

So, let's take take the exponent:

[tex]9^{log_{9}}(\frac{1}{81})=9^{-2}[/tex]

[tex]\frac{1}{81}=9^{-2}[/tex]

now, we can write the negavitve power as:

[tex]\frac{1}{81}=\frac{1}{9^{2}}[/tex]

So, the aswer will be:

[tex]9^{2}=81[/tex]

   

2)

Applying equation 1, let's take log in base 2 on each side of the equation

[tex]log_{2}(2^{7})=log_{2}(128)[/tex]

using the power definition in log, we have:

[tex]7log_{2}(2)=log_{2}(128)[/tex]

Therefore, the answer is:

[tex]7=log_{2}(128)[/tex]

I hope it helps you!