Respuesta :

Given:

The vertex of a quadratic function is (-5,-1) and it passes through the point (-2,2).

To find:

The vertex and standard form of the quadratic function.

Solution:

The vertex form of a quadratic function is:

[tex]f(x)=a(x-h)^2+k[/tex]

Where, a is a constant, (h,k) is vertex.

The vertex of a quadratic function is (-5,-1). It means [tex]h=-5,k=-1[/tex].

[tex]f(x)=a(x-(-5))^2+(-1)[/tex]

[tex]f(x)=a(x+5)^2-1[/tex]             ...(i)

The quadratic function passes through the point (-2,2). Putting [tex]x=-2,f(x)=2[/tex] in (i), we get

[tex]2=a(-2+5)^2-1[/tex]

[tex]2+1=a(3)^2[/tex]

[tex]3=9a[/tex]

[tex]\dfrac{1}{3}=a[/tex]

Putting [tex]a=\dfrac{1}{3}[/tex] in (i), we get

[tex]f(x)=\dfrac{1}{3}(x+5)^2-1[/tex]

Therefore, the vertex for of the quadratic function is [tex]f(x)=\dfrac{1}{3}(x+5)^2-1[/tex].

The standard form of a quadratic function is:

[tex]f(x)=Ax^2+Bx+C[/tex]

We have,

[tex]f(x)=\dfrac{1}{3}(x+5)^2-1[/tex]

[tex]f(x)=\dfrac{1}{3}(x^2+10x+25)-1[/tex]

[tex]f(x)=\dfrac{1}{3}x^2+\dfrac{10}{3}x+\dfrac{25}{3}-1[/tex]

[tex]f(x)=\dfrac{1}{3}x^2+\dfrac{10}{3}x+\dfrac{22}{3}[/tex]

Therefore, the standard form of a quadratic function is [tex]f(x)=\dfrac{1}{3}x^2+\dfrac{10}{3}x+\dfrac{22}{3}[/tex].