Given:
The system of equations is:
[tex]x+3y=-13[/tex]
[tex]4x+4y=-12[/tex]
To find:
The solution for the given system of equations.
Solution:
We have,
[tex]x+3y=-13[/tex] ..(i)
[tex]4x+4y=-12[/tex] ...(ii)
Multiply equation (i) by 4, to make common coefficient of x.
[tex]4x+12y=-52[/tex] ..(iii)
Subtract (ii) from (iii).
[tex]4x+12y-4x-4y=-52-(-12)[/tex]
[tex]8y=-40[/tex]
[tex]y=\dfrac{-40}{8}[/tex]
[tex]y=-5[/tex]
Putting [tex]y=-5[/tex] in (i), we get
[tex]x+3(-5)=-13[/tex]
[tex]x-15=-13[/tex]
[tex]x=-13+15[/tex]
[tex]x=2[/tex]
Therefore, the solution of the given system of equations is [tex]x=2,y=-5[/tex].