Respuesta :

Answer:

[tex]f^{-1}(x) = \sqrt[3]{\frac{x -4}{5}} +2[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 5(x - 2)^3 + 4[/tex]

Required

Determine the inverse

[tex]f(x) = 5(x - 2)^3 + 4[/tex]

Replace f(x) with y

[tex]y = 5(x - 2)^3 + 4[/tex]

Swap the positions of x and y

[tex]x = 5(y - 2)^3 + 4[/tex]

Make y the subject

[tex]x -4= 5(y - 2)^3[/tex]

Divide by 5

[tex]\frac{x -4}{5}= (y - 2)^3[/tex]

Take cube roots of both sides

[tex]\sqrt[3]{\frac{x -4}{5}}= y - 2[/tex]

Add 2 to both sides

[tex]\sqrt[3]{\frac{x -4}{5}} +2 = y[/tex]

[tex]y = \sqrt[3]{\frac{x -4}{5}} +2[/tex]

Replace y with [tex]f^{-1}(x)[/tex]

[tex]f^{-1}(x) = \sqrt[3]{\frac{x -4}{5}} +2[/tex]