Respuesta :

Given:

The function is

[tex]f(x)=4x+9[/tex]

Domain = {-4, -2, 0, 2}

To find:

The range of the given function for the given domain.

Solution:

We know that domain is the set of input values and range is the set  of output values.

We have, [tex]f(x)=4x+9[/tex] and domain = {-4, -2, 0, 2}.

Putting x=-4 in the given function, we get

[tex]f(-4)=4(-4)+9[/tex]

[tex]f(-4)=-16+9[/tex]

[tex]f(-4)=-7[/tex]

Putting x=-2 in the given function, we get

[tex]f(-2)=4(-2)+9[/tex]

[tex]f(-2)=-8+9[/tex]

[tex]f(-2)=1[/tex]

Putting x=0 in the given function, we get

[tex]f(0)=4(0)+9[/tex]

[tex]f(0)=0+9[/tex]

[tex]f(0)=9[/tex]

Putting x=2 in the given function, we get

[tex]f(2)=4(2)+9[/tex]

[tex]f(2)=8+9[/tex]

[tex]f(2)=17[/tex]

The output values are -7, 1, 9, 17. So, the range of the function f(x) for the given domain is {-7, 1, 9, 17}.

Therefore, the correct option is D.