Respuesta :
Answer:
y=5(x-3)^2+2
Step-by-step explanation:
You plug the point into f(x)=a(x-3)^2+2... that already has already been solved for the vertex that you want. Then you swap it out for the solution you have solved for.
The required function is [tex]f(x)=5(x-3)^2+2[/tex].
Important information:
- Vertex of a quadratic function is (3,2).
- The graph passes through the point (4,7).
Quadratic function:
The vertex form of a quadratic function is:
[tex]f(x)=a(x-h)^2+k[/tex]
Where, [tex]a[/tex] is a constant and [tex](h,k)[/tex] is vertex.
Substitute [tex]h=3,k=2[/tex].
[tex]f(x)=a(x-3)^2+2[/tex] ...(i)
The graph passes through the point (4,7). Substitute [tex]x=4, f(x)=7[/tex] in (i).
[tex]7=a(4-3)^2+2[/tex]
[tex]7=a+2[/tex]
[tex]7-2=a[/tex]
[tex]5=a[/tex]
Substitute [tex]a=5[/tex] in (i).
[tex]f(x)=5(x-3)^2+2[/tex]
Therefore, the required function is [tex]f(x)=5(x-3)^2+2[/tex].
Find out more about 'Quadratic function' here:
https://brainly.com/question/15280010