Respuesta :

Given:

The table of values.

To find:

The y-intercept of the given function.

Solution:

The table of values represents a linear function because the rate of change is constant.

Consider any two points from the given table. Let the two points are (-2,15) and (1,6). Then the equation of the linear function is

[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

[tex]y-15=\dfrac{6-15}{1-(-2)}(x-(-2))[/tex]

[tex]y-15=\dfrac{-9}{1+2}(x+2)[/tex]

[tex]y-15=\dfrac{-9}{3}(x+2)[/tex]

[tex]y-15=-3(x+2)[/tex]

Adding 15 on both sides, we get

[tex]y=-3x-6+15[/tex]

[tex]y=-3x+9[/tex]

Putting x=0, we get

[tex]y=-3(0)+9[/tex]

[tex]y=0+9[/tex]

[tex]y=9[/tex]

The y-intercept is 9. Therefore, the correct option is C.

Answer: this is correct

Step-by-step explanation:

From turning this assignment in this is correct