Respuesta :
Given:
The table of values.
To find:
The y-intercept of the given function.
Solution:
The table of values represents a linear function because the rate of change is constant.
Consider any two points from the given table. Let the two points are (-2,15) and (1,6). Then the equation of the linear function is
[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex]y-15=\dfrac{6-15}{1-(-2)}(x-(-2))[/tex]
[tex]y-15=\dfrac{-9}{1+2}(x+2)[/tex]
[tex]y-15=\dfrac{-9}{3}(x+2)[/tex]
[tex]y-15=-3(x+2)[/tex]
Adding 15 on both sides, we get
[tex]y=-3x-6+15[/tex]
[tex]y=-3x+9[/tex]
Putting x=0, we get
[tex]y=-3(0)+9[/tex]
[tex]y=0+9[/tex]
[tex]y=9[/tex]
The y-intercept is 9. Therefore, the correct option is C.
Answer: this is correct
Step-by-step explanation:
From turning this assignment in this is correct