Respuesta :

Given:

The figure of a right angle triangle.

To find:

The value of x and measures of all angles of the triangle.

Solution:

According to the angle sum property, the sum of all interior angles of a triangle is 180 degrees.

Using angle sum property, we get

[tex](x+60)^\circ+(x+50)^\circ+90^\circ=180^\circ[/tex]

[tex](2x+200)^\circ=180^\circ[/tex]

[tex](2x)^\circ=180^\circ-200^\circ[/tex]

[tex](2x)^\circ=-20^\circ[/tex]

It can be written as

[tex](2x)=-20[/tex]

Divide both sides by 2.

[tex]x=-10[/tex]

The value of x is -10.

Now,

[tex]m\angle A=x+50[/tex]

[tex]m\angle A=-10+50[/tex]

[tex]m\angle A=40[/tex]

And,

[tex]m\angle B=x+60[/tex]

[tex]m\angle B=-10+60[/tex]

[tex]m\angle B=50[/tex]

Therefore, the value of x is -10, measure of angle A is 40 degrees and measure of angle B is 50 degrees.