Answer:
500000
Step-by-step explanation:
We need to find the value of the given expression :
[tex]5^{\dfrac{5}{2}}\times 20^{\dfrac{3}{2}}\div 10^{-2}[/tex]
We can do it as per BODMAS rule.
[tex]5^{\dfrac{5}{2}}\times (\dfrac{20^{\dfrac{3}{2}}}{10^{-2}})\\\\=5^{\dfrac{5}{2}}\times {20^{\dfrac{3}{2}}}\times {10^{2}}\\\\=5^{\dfrac{5}{2}}\times {20^{\dfrac{3}{2}}}\times 100\\\\=5^{\dfrac{5}{2}}\times {(5\times 4)^{\dfrac{3}{2}}}\times 100\\\\=5^{\dfrac{5}{2}}\times {(5^{\dfrac{3}{2}})\times (4)^{\dfrac{3}{2}}}\times 100\\\\=5^{(\dfrac{5}{2}+\dfrac{3}{2})}\times 2^2^{\dfrac{3}{2}}\times 100\\\\=5^4\times 2^3\times 100\\\\=625\times 8\times 100\\\\=500000[/tex]
So, the required answer is 500000.